Dynamic Embedding Tables ======================== The RecIS Dynamic Embedding Tables provides efficient and scalable sparse parameter storage and lookup capabilities, supporting real-time updates of large-scale dynamic vocabularies and distributed training, offering complete sparse feature embedding solutions for recommendation systems and other scenarios. Core Features ------------- **Dynamic Embedding Management** - **Real-time Expanding**: Support for dynamically adding new feature IDs during training without predefined vocabulary size - **Feature Filtering**: Provide filtering strategies to automatically remove low-frequency or expired features **Distributed Storage Architecture** - **Distributed Sharding**: Row-wise partitioning supporting multi-worker parallel training - **Gradient Aggregation**: Support for gradient aggregation strategies by ID or by worker **High-Performance Computing Optimization** - **Operator Fusion**: Batch processing and fusion optimization for multi-feature embedding lookups - **GPU Acceleration**: Complete CUDA operator support fully utilizing GPU parallel computing capabilities Single Dynamic Embedding Table ------------------------------- .. currentmodule:: recis.nn .. autoclass:: DynamicEmbedding :members: __init__, forward Embedding Configuration ----------------------- .. autoclass:: EmbeddingOption Embedding Engine ---------------- .. autoclass:: EmbeddingEngine :members: __init__, forward