保存部分Sparse参数 ===================== 详细API文档: :class:`recis.framework.trainer.TrainingArguments` - TrainingArguments 通过名字指定 ------------------------ .. code-block:: python train_arg = TrainingArguments( # item表中的全部字段都不保存 params_not_save=[ "item@id", "item@emb", "item@sparse_adamw_tf_exp_avg", "item@sparse_adamw_tf_exp_avg_sq"], # ... 其他配置 ) # 定义trainer # trainer = Trainer(train_arg, ...) 自定义过滤函数 ------------------------ .. code-block:: python # 过滤hashtable中以item开头的表 def filter_fn(blocks): out_blocks = [] for block in blocks: if not block.tensor_name().startswith("item"): out_blocks.append(block) return out_blocks train_arg = TrainingArguments( # item表中的全部字段都不保存 save_filter_fn=filter_fn, # ... 其他配置 ) # 定义trainer # trainer = Trainer(train_arg, ...)