模型定义 ==================== 稀疏模型 ---------- 稀疏部分的定义由特征转换(Feature Engine)与向量查找(Embedding Engine)组建完成的,可参考对应文档: - :doc:`../feature/engine` - :doc:`../embedding/engine` 另外可以通过FG模块快速完成上述两部分的定义,可参考 - :ref:`fg_model` 稠密模型 ---------- 模型的稠密部分可以直接通过torch的原生api自由定义 简单示例 ---------- 使用Feature Engine / Embedding Engine构建 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python class MyModel(nn.Module): def __init__(self, feature_conf, emb_opt): self.feature_engine = FeatureEngine(feature_conf) self.embedding_engine = EmbeddingEngine(emb_opt) # ... def forward(self, samples): samples = self.feature_engine(samples) samples = self.embedding_engine(samples) label = samples.pop("label") # ... 使用FG模块构建 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python class MyModel(nn.Module): def __init__(self, fg: FG): self.sparse_arch = RecISModel.from_fg(fg) # ... def forward(self, samples): samples, ids, labels = self.sparse_arch(samples) label = labels["label"] # ...