Source code for recis.optim.sparse_adamw

import torch

from recis.optim.sparse_optim import SparseOptimizer


[docs] class SparseAdamW(SparseOptimizer): """Sparse AdamW optimizer for efficient sparse parameter optimization. This class implements the AdamW optimization algorithm specifically optimized for sparse parameters in recommendation systems. It extends the SparseOptimizer base class and uses RecIS's C++ implementation for maximum performance. The AdamW algorithm combines adaptive learning rates from Adam with proper weight decay regularization. For sparse parameters, this implementation only updates parameters that have received gradients, making it highly efficient for large embedding tables where only a small fraction of parameters are active in each training step. Mathematical formulation: .. math:: m_t = β₁ * m_{t-1} + (1 - β₁) * g_t \n v_t = β₂ * v_{t-1} + (1 - β₂) * g_t² \n m̂_t = m_t / (1 - β₁^t) \n v̂_t = v_t / (1 - β₂^t) \n θ_t = θ_{t-1} - lr * (m̂_t / (√v̂_t + ε) + weight_decay * θ_{t-1}) Where: - θ: parameters - g: gradients - m: first moment estimate (momentum) - v: second moment estimate (variance) - β₁, β₂: exponential decay rates - lr: learning rate - ε: numerical stability constant Example: Creating and using SparseAdamW: .. code-block:: python # Initialize with custom hyperparameters optimizer = SparseAdamW( param_dict=sparse_parameters, lr=0.001, # Learning rate beta1=0.9, # First moment decay rate beta2=0.999, # Second moment decay rate eps=1e-8, # Numerical stability weight_decay=0.01, # L2 regularization strength ) # Training with gradient accumulation optimizer.set_grad_accum_steps(4) for batch in dataloader: loss = model(batch) / 4 # Scale for accumulation loss.backward() optimizer.step() optimizer.zero_grad() """
[docs] def __init__( self, param_dict: dict, lr=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, weight_decay=1e-2, amsgrad=False, ) -> None: """Initialize SparseAdamW optimizer with specified hyperparameters. Args: param_dict (dict): Dictionary of sparse parameters to optimize. Keys are parameter names, values are parameter tensors (typically HashTables). lr (float, optional): Learning rate. Defaults to 1e-3. beta1 (float, optional): Exponential decay rate for first moment estimates. Should be in [0, 1). Defaults to 0.9. beta2 (float, optional): Exponential decay rate for second moment estimates. Should be in [0, 1). Defaults to 0.999. eps (float, optional): Small constant added to denominator for numerical stability. Defaults to 1e-8. weight_decay (float, optional): Weight decay coefficient (L2 regularization). Defaults to 1e-2. amsgrad (bool, optional): Whether to use AMSGrad variant. Currently not supported and will raise ValueError if True. Defaults to False. Raises: ValueError: If amsgrad is True (not currently supported). Example: .. code-block:: python # Basic initialization optimizer = SparseAdamW(sparse_params) # Custom hyperparameters for recommendation systems optimizer = SparseAdamW( param_dict=embedding_params, lr=0.01, # Higher learning rate for sparse params beta1=0.9, # Standard momentum beta2=0.999, # Standard variance decay eps=1e-8, # Numerical stability weight_decay=0.001, # Light regularization ) # Conservative settings for fine-tuning optimizer = SparseAdamW( param_dict=pretrained_embeddings, lr=0.0001, # Low learning rate weight_decay=0.1, # Strong regularization ) Note: The param_dict should contain HashTable parameters that support sparse gradient updates. Regular dense tensors may not work correctly with this optimizer. """ super().__init__(lr=lr) # Store hyperparameters self._lr = lr self._beta1 = beta1 self._beta2 = beta2 self._eps = eps self._weight_decay = weight_decay # AMSGrad is not currently supported if amsgrad: raise ValueError("amsgrad is not support now") self._amsgrad = amsgrad # Create the underlying C++ optimizer implementation self._imp = torch.classes.recis.SparseAdamW.make( param_dict, self._lr, self._beta1, self._beta2, self._eps, self._weight_decay, self._amsgrad, )