API Documentation
RecIS provides rich API interfaces. This section details the usage of each module.
Core Module Overview
Module |
Description |
---|---|
Data reading and preprocessing, supports local Orc file data sources |
|
Feature engineering module, supports feature processing and transformation |
|
Model-related modules, including dynamic embedding and special operators provided by recis |
|
Evaluation metrics, including AUC, GAUC and other commonly used metrics in recommendation systems |
|
Hooks, including log printing, performance analysis tools and other hooks |
|
Optimizer module, provides sparse parameter optimization |
|
Training framework, provides trainer and checkpoint management |
|
Serialization module, includes Saver, Loader and Checkpoint direct reading tools |
|
Utility functions, including logging, data processing and other auxiliary functions |
Quick Index
Common Classes and Functions
recis.io.OrcDataset
- ORC Datasetrecis.features.FeatureEngine
- Feature Enginerecis.nn.EmbeddingEngine
- Embedding Enginerecis.metrics.auroc.AUROC
- AUC Calculationrecis.optim.sparse_adamw.SparseAdamW
- Sparse AdamW Optimizerrecis.framework.trainer.Trainer
- Trainer
Important Configuration Classes
recis.nn.EmbeddingOption
- Embedding Configurationrecis.framework.trainer.TrainingArguments
- Training Parameter Configuration
Checkpoint Reading Tools
recis.serialize.checkpoint_reader.CheckpointReader
- Read Checkpoint Files
Version Compatibility
Note
RecIS requires Python 3.10+ and PyTorch 2.4+. APIs may differ between versions, please refer to the documentation for the corresponding version.