TrajWiseLearning——StarPO (State-Thinking-Actions-Reward Policy Optimization)
Introduction
StarPO (State-Thinking-Actions-Reward Policy Optimization) is a reinforcement learning algorithm for LLM agent training. It optimizes by treating the entire multi-turn interaction trajectory (including observations, reasoning traces, actions, and feedback) as a coherent unit, rather than independently processing each action as in traditional methods.
The core idea of StarPO is trajectory-level optimization, which alternates between two phases:
- Rollout Phase: Generate reasoning-interaction trajectories
- Update Phase: Optimize the model based on complete trajectories
StarPO Configuration Parameters
In ROLL, the core implementation of StarPO is located at roll/pipeline/agentic/utils.py
. The specific configuration parameters for the StarPO algorithm are as follows (roll.pipeline.agentic.agentic_config.AgenticConfig
):
# StarPO core config
# StarPO related
adv_estimator: "reinforce"
# rollout_batch_size is the number of trajectories
rollout_batch_size: 1024
val_batch_size: 1024
sequence_length: 1024
advantage_clip: 0.2
ppo_epochs: 1
# pg_clip: 0.1
#dual_clip_loss: True
init_kl_coef: 0.0
whiten_advantages: true
entropy_loss_coef: 0
max_grad_norm: 1.0
reward_normalization:
grouping: traj_group_id # Can be tags(env_type)/traj_group_id(group)/batch(rollout_batch)... group_by calculates reward/adv
method: mean # asym_clip / identity / mean_std / mean
train_env_manager:
max_env_num_per_worker: 16
num_env_groups: 128
# under the same group, the env config and env seed are ensured to be equal
group_size: 8 # grpo's grpo
tags: [FrozenLake]
num_groups_partition: [128] # If not set, all env names divide nums equally. Under the same group, the env config and env seed (prompt) are equal in each generation
env_manager_cls: roll.pipeline.agentic.env_manager.traj_env_manager.TrajEnvManager
Core Parameter Descriptions
adv_estimator
: Advantage estimator type, set to "reinforce", which is the core configuration of the StarPO algorithmenv_manager_cls
: Environment manager class, StarPO needs to useroll.pipeline.agentic.env_manager.traj_env_manager.TrajEnvManager
PPO Related Parameters
The following parameters are common configuration items for PPO-class algorithms:
rollout_batch_size
: Number of trajectories per rollout batch, default value is 1024val_batch_size
: Validation batch size, default value is 1024sequence_length
: Maximum sequence length, default value is 1024advantage_clip
: Advantage value clipping range, default value is 0.2ppo_epochs
: Number of optimization epochs per batch of samples, default value is 1init_kl_coef
: Initial coefficient for KL penalty, default value is 0.0whiten_advantages
: Whether to whiten advantage values, default value is trueentropy_loss_coef
: Entropy loss coefficient, default value is 0max_grad_norm
: Maximum norm for gradient clipping, default value is 1.0
Environment Manager Parameters
train_env_manager.max_env_num_per_worker
: Maximum number of environments per worker, default value is 16train_env_manager.num_env_groups
: Number of training environment groups, default value is 128train_env_manager.group_size
: Number of environments per group, default value is 8train_env_manager.tags
: List of environment tags, default value is [FrozenLake]train_env_manager.num_groups_partition
: Group allocation for each environment type, default value is [128]
Reference Examples
You can refer to the following configuration files to set up StarPO training:
./examples/qwen2.5-0.5B-agentic/agent_val_frozen_lake.yaml
References
[1] Liu, T.; Feng, L.; An, B. StarPO: State-Regularized Policy Optimization for LLM Agent Training. arXiv 2025, 2504.20073.