Source code for recis.optim.sparse_adam

import torch

from recis.optim.sparse_optim import SparseOptimizer


[docs] class SparseAdam(SparseOptimizer): """Sparse Adam optimizer for efficient sparse parameter optimization. This class implements the Adam optimization algorithm specifically optimized for sparse parameters in recommendation systems. It extends the SparseOptimizer base class and uses RecIS's C++ implementation for maximum performance. The Adam algorithm uses adaptive learning rates computed from estimates of first and second moments of gradients. For sparse parameters, this implementation only updates parameters that have received gradients, making it highly efficient for large embedding tables where only a small fraction of parameters are active in each training step. Key advantages for sparse parameters: - Only active parameters are updated, saving computation - Separate adaptive learning rates for each sparse parameter - Efficient memory usage for momentum and variance estimates - Optimized C++ implementation for maximum performance Example: Creating and using SparseAdam: .. code-block:: python # Initialize with default hyperparameters optimizer = SparseAdam( param_dict=sparse_parameters, lr=0.001, # Learning rate beta1=0.9, # First moment decay rate beta2=0.999, # Second moment decay rate eps=1e-8, # Numerical stability weight_decay=0.0, # No weight decay by default ) # Training with gradient accumulation optimizer.set_grad_accum_steps(4) for batch in dataloader: loss = model(batch) / 4 # Scale for accumulation loss.backward() optimizer.step() optimizer.zero_grad() """
[docs] def __init__( self, param_dict: dict, lr=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, weight_decay=1e-2, amsgrad=False, ) -> None: """Initialize SparseAdam optimizer with specified hyperparameters. Args: param_dict (dict): Dictionary of sparse parameters to optimize. Keys are parameter names, values are parameter tensors (typically HashTables). lr (float, optional): Learning rate. Defaults to 1e-3. beta1 (float, optional): Exponential decay rate for first moment estimates. Should be in [0, 1). Defaults to 0.9. beta2 (float, optional): Exponential decay rate for second moment estimates. Should be in [0, 1). Defaults to 0.999. eps (float, optional): Small constant added to denominator for numerical stability. Defaults to 1e-8. weight_decay (float, optional): Weight decay coefficient. Note that unlike SparseAdamW, this applies L2 penalty to gradients rather than direct weight decay. Defaults to 1e-2. amsgrad (bool, optional): Whether to use AMSGrad variant. Currently not supported and will raise ValueError if True. Defaults to False. Raises: ValueError: If amsgrad is True (not currently supported). Note: The param_dict should contain HashTable parameters that support sparse gradient updates. The weight_decay in SparseAdam applies L2 penalty to gradients, which is different from the direct weight decay used in SparseAdamW. """ super().__init__(lr=lr) # Store hyperparameters self._lr = lr self._beta1 = beta1 self._beta2 = beta2 self._eps = eps self._weight_decay = weight_decay # AMSGrad is not currently supported if amsgrad: raise ValueError("amsgrad is not support now") self._amsgrad = amsgrad # Create the underlying C++ optimizer implementation self._imp = torch.classes.recis.SparseAdam.make( param_dict, self._lr, self._beta1, self._beta2, self._eps, self._weight_decay, self._amsgrad, )